Kapsch TrafficCom – Snapshot

Scope of business:
- Turn-key solutions, component sales and operations of road infrastructure related ITS and traffic management solutions (focus: road user charging systems)
- 20 years of experience in electronic tolling (+230 references in 41 countries)

Offering:
- Research & development of core technologies, systems & products (own manufacturing); system planning, implementation, integration & roll-out; technical & commercial operations of systems

Selected references:
- Nationwide Tolling (Truck Tolling) (Eastern Europe)
- Object Tolling (All vehicle tolling) (Oceania, SA, South Ame.)
- Urban Tolling (City Charging/Access Restriction) (Europe)

Number of employees:
- 3000+ worldwide

Locations:
- Headquarters in Vienna (Austria)
- Development centers in Austria, Argentina, Sweden and USA
- Sales offices in 23 countries
Electronic Toll Collection Overview
Objectives of Toll Collection

I. Financing of traffic
- Typically a mixture of financial tools is being applied (tolling is one of them)
- Fair pay per use principle
- Provides a maximum in flexibility in pursuing specific transport policy aims (traffic management, environmental protection)

II. Traffic management
- Making users more aware of the costs of road use
- Regulating traffic demand
- Static, variable, and dynamic pricing

III. Environmental protection
- More and more tolling plays an essential role in the greening of transport
- Allows to cut down emissions by reducing traffic
- Allows to promote low emission engines through low tariffs
ETC Schemes - Overview

Nation Wide Tolling
- Highways / federal roads (/rural roads)
- Financing, traffic management, environmental protection
- Distance-based or time-based
- Truck-tolling
- Short range communication, GNSS, or Hybrid
- Example: Czech, Austria, Poland

Object Tolling
- Highway Concessions, Tunnels, bridges
- Financing
- Distance-based
- MLFF and Conventional tolling (manual / ETC single lanes)
- All vehicles
- Short Range/ANPR
- Examples: Australia, New Zealand, Chile, South Africa, India

Urban Tolling & Access Restriction
- City centers
- Financing, traffic management, environmental protection
- Tolling, access restriction, low emission zones
- Static or variable pricing or driving bans/restricted access
- All vehicles
- Short range/ANPR
- Examples: Italy, Norway, Germany
ETC Technologies

Short-range communication ETC systems (DSRC):
- EU: 5.8 GHz CEN DSRC (US: 915 MHz/5.9 GHz WAVE)
- Standardized (e.g. 5.8 CEN DSRC) > Interoperability
- Low cost onboard units
- Low operational costs (no over-the-air data transfer)
- Highest accuracy
- Roadside stations needed
- Infrastructure can be shared with other applications

Satellite positioning ETC systems (GNSS):
- GNSS (Global Navigation Satellite Systems)
- GPS, GLONASS, GALILEO
- Thin client vs. thick client
- More expensive onboard unit
- Higher operational costs (over-the-air data transfer)
- No roadside equipment (flexibility)

Video ETC systems (ANPR):
- ANPR (Automated Number Plate Recognition)
- Vehicles don’t have to be equipped with an onboard unit
- Ideal for city environments
- Manual verification needed (no 100% capturing rate)
Choosing the right ETC Technology ("ETC Technology Matrix")

<table>
<thead>
<tr>
<th>Hybrid sample:</th>
<th>Tolled roads, zone, object</th>
<th>Tolled vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Commercial vehicles > 12t</td>
</tr>
<tr>
<td>Nation-wide tolling</td>
<td>Highways</td>
<td>DSRC (GNSS)</td>
</tr>
<tr>
<td></td>
<td>+ Federal roads</td>
<td>GNSS (DSRC)</td>
</tr>
<tr>
<td></td>
<td>+ Rural roads</td>
<td>GNSS</td>
</tr>
<tr>
<td>Urban tolling/access</td>
<td>City zone(s)</td>
<td>DSRC/ANPR</td>
</tr>
<tr>
<td>Object tolling</td>
<td>Highway section, bridge, tunnel,</td>
<td>DSRC/ANPR</td>
</tr>
</tbody>
</table>

Hybrid sample:
- DSRC
- GNSS

12.12.2011 | Electronic Toll Collection
Sample System: Kapsch Area (Hybrid DSRC/GNSS)

Overview:
- Kapsch Area is a hybrid system based on GNSS/GPRS and DSRC technologies; it allows a combination of DSRC tolling on highways and other main roads and GNSS tolling where roadside infrastructure possibilities are limited.

How it works:
- Vehicles are equipped with a hybrid DSRC/GNSS OBU.
- OBU works in short-range mode on “DSRC routes”.
- OBU automatically switches to GNSS/GSM on other roads.
- Pure GNSS operation is possible too.

Highlights:
- Hybrid system providing a maximum in flexibility.
- Combines the benefits of DSRC and GNSS.
- High level roads with heavy traffic can be tolled using DSRC (high accuracy, low operational costs).
- Lower road network can be tolled using GNSS (no roadside stations needed).
Kapsch Area / System Overview

Onboard Unit with GPS & GSM/GPRS Module

GPS Location Points

Transactions

Central System

Road Side: GPS/GSM Thin Client

Road Side: Other System (e.g. DSRC)

Firewall & Router

Communication Server

Map Matching Center

Transactions Collector

Map

Tariff

Operational Back Office

Commercial Back Office

Contract data (vehicle & user data)

Central System

WAN

GPRS

System Monitoring

Data Warehouse

Central Data Repository

Transactions

12.12.2011 | Electronic Toll Collection
ETC - Kapsch Solutions
Enforcement

Overview:
- Enforcement has to be an integral part of each tolling system ensuring that fraud is being reduced to a minimum, securing the income of the road operator and ensuring fairness to all road users

How it works:
- Requires a network of automated and manual enforcement means
- Automated enforcement stations detect potential violators
- Manual verification of incidents in the enforcement center
- Mobile enforcement for catching violators and for on-site checks

Available enforcement systems:
- Fixed enforcement stations (for permanent compliance checking at strategically important locations)
- Portable enforcement equipment (> surprise effect)
- Mobile enforcement vehicles for on-site checks of flowing traffic
- Handheld devices for manual checks at rest areas etc.
- Enforcement center (as part of the back office system)
Tags

- Kapsch TS3203 mini tag for passenger cars / 5.8 GHz CEN DSRC
- Kapsch OBUs for heavy goods vehicles with integrated MMI / 5.8 GHz CEN DSRC
- Kapsch TS3209 hybrid DSRC/GPS on-board unit suitable for passenger cars as well as heavy goods vehicles
- Kapsch IVHS E-Zpass / 915 Mhz
Kapsch References - Worldwide.

- Austria
- Norway
- Denmark
- Netherlands
- United Kingdom
- Ireland
- Germany
- France
- Portugal
- Spain
- Switzerland
- Italy
- Slovenia
- Sweden
- Czech Republic
- Poland
- Hungary
- Turkey
- Serbia
- Greece
- Montenegro
- Russian Federation
- China
- Vietnam
- Philippines
- Australia
- Mexico
- Costa Rica
- Panama
- Colombia
- Ecuador
- Brazil
- Argentina
- Chile
- South Africa
- New Zealand
- Canada
- USA
- Chile
- Argentina
- South Africa
- Australia
- New Zealand
- Danish
- Netherlands
- United Kingdom
- Ireland
- Germany
- France
- Portugal
- Spain
- Switzerland
- Italy
- Slovenia
- Sweden
- Czech Republic
- Poland
- Hungary
- Turkey
- Serbia
- Greece
- Montenegro
- Russian Federation
- China
- Vietnam
- Philippines
- Australia
Thank you for your attention.

Miguel Jáuregui
Chief Executive Officer

Kapsch TrafficCom Argentina
Juana Azurduy 2440 | C1429BZJ | Buenos Aires | Argentina
Phone +43 50 811 0 | Fax +43 50 811 9999
E-mail miguel.jauregui@kapsch.net

Please note:
The content of this presentation is the intellectual property of Kapsch AG and all rights are reserved with respect to the copying, reproduction, alteration, utilisation, disclosure or transfer of such content to third parties. The foregoing is strictly prohibited without the prior written authorisation of Kapsch AG. Product and company names may be registered brand names or protected trademarks of third parties and are only used herein for the sake of clarification and to the advantage of the respective legal owner without the intention of infringing proprietary rights.